
RESEARCH POSTER PRESENTATION DESIGN © 2012

www.PosterPresentations.com

	
 Hyun	
 Oh	
 Song1	
 ,	
 Stefan	
 Zickler2	
 ,	
 Tim	
 Althoff1	
 ,	
 Ross	
 Girshick3	
 ,	
 Mario	
 Fritz4	
 ,	
 Christopher	
 Geyer2	
 ,	
 Pedro	
 Felzenszwalb5,	
 	
 Trevor	
 Darrell1

1UC	
 Berkeley,	
 2iRobot,	
 3University	
 of	
 Chicago,	
 4MPI	
 InformaKcs,	
 5Brown	
 University

Sparselet	
 Models	
 for	
 Efficient	
 Mul9class	
 Object	
 Detec9on

Motivation

• High detection accuracy : DPM

• Hypothesis pruning : Cascade / Coarse-to-fine

• What if we want to detect hundreds or thousands
of object classes? Sparselets

Intuition

• As the number of object categories grows,
individual model filters are increasingly likely to be
redundant with respect to each other.

Bottleneck in DPM inference
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

locations ⇥1, . . . , ⇥N for a model with C components and N part filters. The score function can be
written as

score(x, z) = wc +
N⇤

i=0

w|
ci⇤ci(x, ⇥i) +

N⇤

i=1

d|
ci⇥ci(⇥0, ⇥i) = w|�(x, z), (7)

where wci are the weights in filter i of component c, dci are the quadratic deformation parameters
specifying the stiffness of the spring connecting the root filter and part filter i of component c, and
wc is a score bias. The feature functions ⇤ci(x, ⇥i) and ⇥ci(⇥0, ⇥i) are local image features (HOG)
and deformation features, respectively. The score can be written as a single dot production between
w = (w1, . . . , wC ,w

|
10, . . . ,w

|
1N , . . . ,w|

C0, . . . ,w
|
CN ,d|

11, . . . ,d
|
1N , . . . ,d|

C1, . . . ,d
|
CN)| (8)

and a sparse cumulative feature vector �(x, z) that is laid out with the same slots as w.

We apply sparselets to all filter slots of w, i.e., the {wci}. The part filters all have the same 6 ⇥
6 shape, but the root filters, both within a mixture model and across classes, have a variety of
dimensions. Unlike [1] and [23] we decompose the root filters, not just the part filters. To do this,
we employ 3 ⇥ 3 sparselets and pad the root filters with an extra one or two rows and columns,
as needed, to ensure that their dimensions are multiples of 3. Summed over the models for all 20
object classes [9] in the PASCAL VOC 2007 dataset [6], there are a total of 4954 3 ⇥ 3 subfilters.
In our experiments below, we represent all of these subfilters by sparse linear combinations of only
256 sparselets — effectively achieving more than an order of magnitude reduction in the number
of model parameters. The HOG image features are 32-dimensional, leading to a sparselet size of
m = 288. Our dictionary is thus undercomplete — which is desirable from a runtime perspective.
Our experimental results confirm that the sparselets spans a sufficient subspace to represent the
subfilters in the 20 PASCAL classes (Sec. 5.1), as well as to generalize to previously unseen classes
from the ImageNet dataset (Sec. 5.2). Our DPM sparselets are visualized in Fig. 1.

4.1 Latent SVM

The DPMs in [10] are learned by optimizing a latent SVM (LSVM):

w� = argmin
w

�

2
⌃w⌃2 + 1

M

M⇤

i=1

max

�
0, 1� yi max

z⇥Z(xi)
w|�(xi, z)

⇥
. (9)

The objective function in Eq. 9 is not convex in w and in practice a local optimum is found by
coordinate descent on an auxiliary function that upper bounds Eq. 9 (see [10] for details). The
coordinate descent algorithm alternates between two steps. In the first step, the set Z(xi) is made
singleton — for each positive example — by setting its only member to be an optimal latent value
assignment for example xi. This step results in a convex optimization problem that has the same
form as a structural SVM. It is therefore straightforward to apply discriminative activation learning a
LSVM: we follow the same coordinate descent scheme and apply the SSVM problem transformation
from Sec. 3.1 to the LSVM’s convex optimization subproblem.

Our implementation is based on the voc-release4 source code from [9]. To optimize the transformed
objective function Eq. 6 when R(�) is either RLasso(�) or REN(�), we modified the default stochas-
tic subgradient descent (SGD) code to implement the truncated gradient descent update of Langford
et al. [17]. This method achieves actual sparsity by shrinking parameters and then truncating small
values every few SGD iterations.

4.2 Visualizing learned DPM sparselets

Each DPM sparselet can be visualized as a 3⇥ 3 filter. In Fig. 1 (left) we show the positive weights
of 128 of the 256 sparselets that we learned from DPMs for the 20 classes from the PASCAL VOC
2007 dataset. Regular structures, such as horizontal, vertical, and diagonal edges, as well as arcs and
corners, are visible. We can order the sparselets activated for a particular category model by sorting
them by the magnitude of their activation coefficients. Fig. 1 (right) shows the top 16 sparselets for
the motorbike category. Some of the activated sparselets resemble circular fragments of wheels.

4.3 Image classification

To illustrate generalized sparselets applicability beyond DPMs, we evaluated our approach on the
Caltech-101 [7] (102 classes, including background) and Caltech-256 (257 classes) [14] datasets.

6

• Filter evaluation takes 60~70 % of total computation
time

• Per every pixel in image pyramid, algorithm computes
1000~3000 convolutions (@ 20 classes)

Sparselets

Sparse reconstruction of filter response

Matrix Factorization point of view

Sparselet DPM270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

locations ⇥1, . . . , ⇥N for a model with C components and N part filters. The score function can be
written as

score(x, z) = wc +
N⇤

i=0

w|
ci⇤ci(x, ⇥i) +

N⇤

i=1

d|
ci⇥ci(⇥0, ⇥i) = w|�(x, z), (7)

where wci are the weights in filter i of component c, dci are the quadratic deformation parameters
specifying the stiffness of the spring connecting the root filter and part filter i of component c, and
wc is a score bias. The feature functions ⇤ci(x, ⇥i) and ⇥ci(⇥0, ⇥i) are local image features (HOG)
and deformation features, respectively. The score can be written as a single dot production between
w = (w1, . . . , wC ,w

|
10, . . . ,w

|
1N , . . . ,w|

C0, . . . ,w
|
CN ,d|

11, . . . ,d
|
1N , . . . ,d|

C1, . . . ,d
|
CN)| (8)

and a sparse cumulative feature vector �(x, z) that is laid out with the same slots as w.

We apply sparselets to all filter slots of w, i.e., the {wci}. The part filters all have the same 6 ⇥
6 shape, but the root filters, both within a mixture model and across classes, have a variety of
dimensions. Unlike [1] and [23] we decompose the root filters, not just the part filters. To do this,
we employ 3 ⇥ 3 sparselets and pad the root filters with an extra one or two rows and columns,
as needed, to ensure that their dimensions are multiples of 3. Summed over the models for all 20
object classes [9] in the PASCAL VOC 2007 dataset [6], there are a total of 4954 3 ⇥ 3 subfilters.
In our experiments below, we represent all of these subfilters by sparse linear combinations of only
256 sparselets — effectively achieving more than an order of magnitude reduction in the number
of model parameters. The HOG image features are 32-dimensional, leading to a sparselet size of
m = 288. Our dictionary is thus undercomplete — which is desirable from a runtime perspective.
Our experimental results confirm that the sparselets spans a sufficient subspace to represent the
subfilters in the 20 PASCAL classes (Sec. 5.1), as well as to generalize to previously unseen classes
from the ImageNet dataset (Sec. 5.2). Our DPM sparselets are visualized in Fig. 1.

4.1 Latent SVM

The DPMs in [10] are learned by optimizing a latent SVM (LSVM):

w� = argmin
w

�

2
⌃w⌃2 + 1

M

M⇤

i=1

max

�
0, 1� yi max

z⇥Z(xi)
w|�(xi, z)

⇥
. (9)

The objective function in Eq. 9 is not convex in w and in practice a local optimum is found by
coordinate descent on an auxiliary function that upper bounds Eq. 9 (see [10] for details). The
coordinate descent algorithm alternates between two steps. In the first step, the set Z(xi) is made
singleton — for each positive example — by setting its only member to be an optimal latent value
assignment for example xi. This step results in a convex optimization problem that has the same
form as a structural SVM. It is therefore straightforward to apply discriminative activation learning a
LSVM: we follow the same coordinate descent scheme and apply the SSVM problem transformation
from Sec. 3.1 to the LSVM’s convex optimization subproblem.

Our implementation is based on the voc-release4 source code from [9]. To optimize the transformed
objective function Eq. 6 when R(�) is either RLasso(�) or REN(�), we modified the default stochas-
tic subgradient descent (SGD) code to implement the truncated gradient descent update of Langford
et al. [17]. This method achieves actual sparsity by shrinking parameters and then truncating small
values every few SGD iterations.

4.2 Visualizing learned DPM sparselets

Each DPM sparselet can be visualized as a 3⇥ 3 filter. In Fig. 1 (left) we show the positive weights
of 128 of the 256 sparselets that we learned from DPMs for the 20 classes from the PASCAL VOC
2007 dataset. Regular structures, such as horizontal, vertical, and diagonal edges, as well as arcs and
corners, are visible. We can order the sparselets activated for a particular category model by sorting
them by the magnitude of their activation coefficients. Fig. 1 (right) shows the top 16 sparselets for
the motorbike category. Some of the activated sparselets resemble circular fragments of wheels.

4.3 Image classification

To illustrate generalized sparselets applicability beyond DPMs, we evaluated our approach on the
Caltech-101 [7] (102 classes, including background) and Caltech-256 (257 classes) [14] datasets.

6

July 12, 2011 Hyun Oh Song

Pose estimation result

1. test

score(x, z) = wc +
N⇤

i=0

w|
ci ci(x, ⌅i) +

N⇤

i=1

d|
ci�ci(⌅0, ⌅i) = w|�(x, z),

= wc +
N⇤

i=0

d⇤

j=1
⇥�ij �=0

�ij

�
s|j ci(x, ⌅i)

⇥
+

N⇤

i=1

d|
ci�ci(⌅0, ⌅i)

(1)

W = {w1, ...,wK}
S = {s1, ..., sd}

min
�ij ,sj

K⇤

i=1

||wi �
d⇤

j=1

�ijsj||22

subject to ||↵i||0 ⇤ ⇤ ⌅i = 1, ..., K

||sj||22 ⇤ 1 ⌅j = 1, ..., d

(2)

score(⇧) = m0(⇧) +
N⇤

i=1

max
⇥

mi(⇧ + ⇥)� di(⇥)

where mi(⇧) =
|S|⇤

j=1
⇥�ij �=0

�ij (� (⇧) ⇥ Sj) .

(3)

Here di are quadratic deformation costs, ⇥ is a displacement and ⇧ is a position and
scale in a feature pyramid. After precomputation, the reconstructed part filter score,
si (⇧), simplifies to

si(⇧) =
|D|⇤

j=1
⇥�ij �=0

�ijMj(⇧). (4)

1

Component
bias Filter evaluation

Deformation
costinput

image

*

intermediate
representation

DPM_bicycledecompose

Bicycle
detections

reconstructDPM_car

DPM_horse

Sparselet

dictionary...

pre-processing reconstructionoffline

dictionary learning

Overall Concept

Complexity per pixel

as shown in Eqn (5):

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

�� ⇥w1�
�� ⇥w2�

...

...

...

...
�� ⇥wK�

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

=

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

↵1

↵2
...
...
...
...

↵K

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

�

⇧⇧⇧⇧⇧⇤

�� ⇥ s1�
�� ⇥ s2�

...

...
�� ⇥ sd�

⇥

⌃⌃⌃⌃⌃⌅
= A M, (5)

Convolution with all model filters

Convolution with sparselets + Sparse reconstruction
=

Nm

|S|m+NE[||↵0||]
(6)

As N grows to a large number, (7)
m

E[||↵0||]
(8)

2. Known object location and category label

* Indicates angle is wrapped at 180�

Nearest Neighbor Discrete Continuous
Bowls 8.55 16.53 8.91
Mugs 12.22 17.58 8.33
Remotes 16.06 20.08 17.76
Markers 23.59 21.85 21.70
Erasers 18.65 21.51 17.06
Spraybottles 19.69 20.86 11.96
Scissors 19.41 24.24 21.27
Pots 15.05 17.30 13.45
Average 16.65 19.99 15.05

Table 1: Pitch angle estimation(RMSE in deg) - Known object location and categ label

3. Full detection, unknown category label

** Indicates test images were omitted in evaluation when handle was significantly
occluded

4. Grasp a⇥ordance prediction

2

as shown in Eqn (5):

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

�� ⇥w1�
�� ⇥w2�

...

...

...

...
�� ⇥wK�

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

=

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

↵1

↵2
...
...
...
...

↵K

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

�

⇧⇧⇧⇧⇧⇤

�� ⇥ s1�
�� ⇥ s2�

...

...
�� ⇥ sd�

⇥

⌃⌃⌃⌃⌃⌅
= A M, (5)

Speedup =
Convolution with all model filters

Convolution with sparselets + Sparse reconstruction
(6)

=
Nm

|S|m+NE[||↵0||]
(7)

As N grows to a large number, (8)

Speedup =
m

E[||↵0||]
(9)

2. Known object location and category label

* Indicates angle is wrapped at 180�

Nearest Neighbor Discrete Continuous
Bowls 8.55 16.53 8.91
Mugs 12.22 17.58 8.33
Remotes 16.06 20.08 17.76
Markers 23.59 21.85 21.70
Erasers 18.65 21.51 17.06
Spraybottles 19.69 20.86 11.96
Scissors 19.41 24.24 21.27
Pots 15.05 17.30 13.45
Average 16.65 19.99 15.05

Table 1: Pitch angle estimation(RMSE in deg) - Known object location and categ label

3. Full detection, unknown category label

** Indicates test images were omitted in evaluation when handle was significantly
occluded

4. Grasp a⇥ordance prediction

2

Sparsity dominates as N grows!

score(⇤) = m0(⇤) +
N�

i=1

max
⇥

mi(⇤ + ⇥)� di(⇥)

where mi(⇤) =
|S|�

j=1
⇥�ij �=0

�ij (� (⇤) ⇥ Sj) .

(3)

Here di are quadratic deformation costs, ⇥ is a displacement and ⇤ is a position and
scale in a feature pyramid. After precomputation, the reconstructed part filter score,
si (⇤), simplifies to

si(⇤) =
|D|�

j=1
⇥�ij �=0

�ijMj(⇤). (4)

� ⇥wi = � ⇥

�

↵↵
d�

j=1
⇥�ij �=0

�ijsj

⇥

��⌦ =
d�

j=1
⇥�ij �=0

�ij (� ⇥ sj) . (5)

Concretely, we can recover individual part filter responses via sparse matrix multiplica-
tion (or lookups) with the activation vector replacing the heavy convolution operation
as shown in Eqn Eq. ??:

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

�� ⇥w1�
�� ⇥w2�

...

...

...

...
�� ⇥wK�

⌅

�����������⌃

=

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

�1

�2
...
...
...
...

�K

⌅

�����������⌃

⇤

⌥⌥⌥⌥⌥⇧

�� ⇥ s1�
�� ⇥ s2�

...

...
�� ⇥ sd�

⌅

�����⌃
= A M, (6)

Speedup =
Convolution with all model filters

Convolution with sparselets + Sparse reconstruction
(7)

=
Nm

|S|m+NE[||�0||]
(8)

m : Convolution filter size (9)

As N grows to a large number, (10)

Speedup =
m

E[||�0||]
(11)

2

N lookups

score(⇤) = m0(⇤) +
N�

i=1

max
⇥

mi(⇤ + ⇥)� di(⇥)

where mi(⇤) =
|S|�

j=1
⇥�ij �=0

�ij (� (⇤) ⇥ Sj) .

(3)

Here di are quadratic deformation costs, ⇥ is a displacement and ⇤ is a position and
scale in a feature pyramid. After precomputation, the reconstructed part filter score,
si (⇤), simplifies to

si(⇤) =
|D|�

j=1
⇥�ij �=0

�ijMj(⇤). (4)

� ⇥wi = � ⇥

�

↵↵
d�

j=1
⇥�ij �=0

�ijsj

⇥

��⌦ =
d�

j=1
⇥�ij �=0

�ij (� ⇥ sj) . (5)

Concretely, we can recover individual part filter responses via sparse matrix multiplica-
tion (or lookups) with the activation vector replacing the heavy convolution operation
as shown in Eqn Eq. ??:

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

�� ⇥w1�
�� ⇥w2�

...

...

...

...
�� ⇥wK�

⌅

�����������⌃

=

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

�1

�2
...
...
...
...

�K

⌅

�����������⌃

⇤

⌥⌥⌥⌥⌥⇧

�� ⇥ s1�
�� ⇥ s2�

...

...
�� ⇥ sd�

⌅

�����⌃
= A M, (6)

Speedup =
Convolution with all model filters

Convolution with sparselets + Sparse reconstruction
(7)

=
Nm

|S|m+NE[||�i||0]
(8)

m : Convolution filter size (9)

As N grows to a large number, (10)

Speedup =
m

E[||�i||0]
(11)

2

score(⇤) = m0(⇤) +
N�

i=1

max
⇥

mi(⇤ + ⇥)� di(⇥)

where mi(⇤) =
|S|�

j=1
⇥�ij �=0

�ij (� (⇤) ⇥ Sj) .

(3)

Here di are quadratic deformation costs, ⇥ is a displacement and ⇤ is a position and
scale in a feature pyramid. After precomputation, the reconstructed part filter score,
si (⇤), simplifies to

si(⇤) =
|D|�

j=1
⇥�ij �=0

�ijMj(⇤). (4)

� ⇥wi = � ⇥

�

↵↵
d�

j=1
⇥�ij �=0

�ijsj

⇥

��⌦ =
d�

j=1
⇥�ij �=0

�ij (� ⇥ sj) . (5)

Concretely, we can recover individual part filter responses via sparse matrix multiplica-
tion (or lookups) with the activation vector replacing the heavy convolution operation
as shown in Eqn Eq. ??:

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

�� ⇥w1�
�� ⇥w2�

...

...

...

...
�� ⇥wK�

⌅

�����������⌃

=

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

�1

�2
...
...
...
...

�K

⌅

�����������⌃

⇤

⌥⌥⌥⌥⌥⇧

�� ⇥ s1�
�� ⇥ s2�

...

...
�� ⇥ sd�

⌅

�����⌃
= A M, (6)

Speedup =
Convolution with all model filters

Convolution with sparselets + Sparse reconstruction
(7)

=
Nm

|S|m+NE[||�i||0]
(8)

m : Convolution filter size (9)

As N grows to a large number, (10)

Speedup =
m

E[||�i||0]
(11)

2

Sparselet in a slide
4

Sparse activation
vectors

 Final
detection

Reconstructed
 responses

Learned
sparselets

Response
 matrix

Input
image

 Reconstruction Pre-processing

Fig. 3: Overview diagram of the our method: once we evaluate the image with
learned sparselets, reconstruction phase can be done via e⌅cient sparse matrix
vector multiplications.

a tree in a top-down fashion [7, 8] by spectral clustering on the a⌅nity matrix.
Others attempt to optimize against a discriminative objective [9, 10]. [11] builds
a taxonomy of object classes based on shared features. Unlike our method, these
approaches may preemptively discard a correct detection if it falls on the wrong
side of a low-depth decision boundary. Attempts have been made to address this
using relaxed hierarchies [12, 13].

3 Sparselets

In this paper we propose and evaluate sparse prototype representations for en-
coding deformable and/or articulated object detection models. We use a part
dictionary learned in a sparse coding framework. This approach, which we term
“sparselets”, has the advantage of leading not only to fast and accurate multi-
class object detection, but o�ers an e⌅cient intermediate representation for de-
tecting new object categories. It is important to note that our approach learns a
dictionary overmodel parameters, not over observed features, as is the customary
application of existing sparse coding methods in the recognition literature.

While sparselets are applicable to a range of techniques, we focus in this pa-
per on the star-structured deformable part models (DPM) from [14]. Briefly, a
DPM is composed of low-resolution root filters that describe an object category’s
global appearance and high-resolution part filters that capture local appearance.
These filters are weight vectors over HOG [15] style features learned by optimiz-
ing a latent SVM [14]. The main computational bottleneck in applying these
models is convolving their filters with a HOG feature pyramid. This fact is
demonstrated by the cascade algorithm for detection with DPMs [1], which dra-
matically reduces detection time by computing filter convolutions over a reduced
set of locations that are chosen based on learned pruning thresholds. Sparselets
o�er a complementary approach for reducing filter convolution costs when the
number of categories becomes large.

Subsparselets = Mini Parts

Parts of an object detector, for any class, can be constructed by
tiling sparse linear combinations of sparselet mini-parts

9

hs ⇥ ws |D| hsws|D| ✏ (hF /hs)(wF /ws) bicycle car cat person

6 ⇥ 6 128 4608 112 1 1.0645 1.0349 0.8521 1.1939

3 ⇥ 3 512 4608 28 4 0.3116 0.3360 0.2552 0.4573

2 ⇥ 2 1152 4608 13 9 0.2298 0.2706 0.1763 0.4007

1 ⇥ 1 4608 4608 3 36 0.1062 0.1200 0.0820 0.1635

6 ⇥ 6 512 18432 112 1 0.0893 0.0528 0.1134 0.0472

3 ⇥ 3 512 4608 28 4 0.3116 0.3360 0.2552 0.4573

2 ⇥ 2 512 2048 13 9 0.3833 0.5962 0.2561 1.2280

1 ⇥ 1 512 512 3 36 0.3172 0.6599 0.1817 1.8594

Table 1: Reconstruction error for four classes as sparselet parameters are varied.

For fixed reconstruction and precomputation budgets BR and BP , we studied
the e�ect of varying sparselet size. Empirically (Table 1), filter reconstruction
error always decreases as we decrease sparselet size.

When there are not too many classes, the precomputation time is not fully
amortized and we would like to make BP small. For a fixed, small BP we mini-
mize reconstruction error by setting hs and ws to small values. However, as we
make the sparselets smaller, |D| grows, possibly making the representation space
budget |D| ⇥ BS too large. In our GPU experiments, we balance memory usage
with sparselet size by setting hs and ws to 3.

When precomputation is amortized, minimizing precomputation time is less
important. However, in this case we are still concerned with keeping the in-
termediate representation reasonably small. By fixing the reconstruction and
representation space budgets, we observe that using more, larger sparselets min-
imizes reconstruction error (at the expense of requiring a larger precomputation
budget). Therefore, in the CPU-based experiments which focused on the o⇤ine
setting we use larger 6� 6 sparselets.

5 Experiments

5.1 Evaluation of reconstruction accuracy on unseen categories

We performed experiments to analyze the relative average precision of recon-
structed, previously unseen categories for a given level of intermediate model
sparsity or compactness. We experimented with three datasets: PASCAL VOC2007
[19], ImageNet [21], and TRECVID [22]. To provide ground truth AP, we ran
cascaded deformable part models [1] trained on the held-out category model. For
a baseline, we extracted singular vectors learned from the training models and
estimated the reconstruction weight vectors from the previously unseen query
category models using a reconstruction from a linear basis of the top-k singular
vectors. We also explored a nearest-neighbor-of-parts baseline where the query

as shown in Eqn (5):

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

�� ⇥w1�
�� ⇥w2�

...

...

...

...
�� ⇥wK�

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

=

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

↵1

↵2
...
...
...
...

↵K

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

�

⇧⇧⇧⇧⇧⇤

�� ⇥ s1�
�� ⇥ s2�

...

...
�� ⇥ sd�

⇥

⌃⌃⌃⌃⌃⌅
= A M, (5)

Speedup =
Convolution with all model filters

Convolution with sparselets + Sparse reconstruction
(6)

=
Nm

|S|m+NE[||↵0||]
(7)

As N grows to a large number, (8)

Speedup =
m

E[||↵0||]
(9)

2. Known object location and category label

* Indicates angle is wrapped at 180�

Nearest Neighbor Discrete Continuous
Bowls 8.55 16.53 8.91
Mugs 12.22 17.58 8.33
Remotes 16.06 20.08 17.76
Markers 23.59 21.85 21.70
Erasers 18.65 21.51 17.06
Spraybottles 19.69 20.86 11.96
Scissors 19.41 24.24 21.27
Pots 15.05 17.30 13.45
Average 16.65 19.99 15.05

Table 1: Pitch angle estimation(RMSE in deg) - Known object location and categ label

3. Full detection, unknown category label

** Indicates test images were omitted in evaluation when handle was significantly
occluded

4. Grasp a⇥ordance prediction

2

as shown in Eqn (5):

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

�� ⇥w1�
�� ⇥w2�

...

...

...

...
�� ⇥wK�

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

=

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

↵1

↵2
...
...
...
...

↵K

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

�

⇧⇧⇧⇧⇧⇤

�� ⇥ s1�
�� ⇥ s2�

...

...
�� ⇥ sd�

⇥

⌃⌃⌃⌃⌃⌅
= A M, (5)

Speedup =
Convolution with all model filters

Convolution with sparselets + Sparse reconstruction
(6)

=
Nm

|S|m+NE[||↵0||]
(7)

As N grows to a large number, (8)

Speedup =
m

E[||↵0||]
(9)

2. Known object location and category label

* Indicates angle is wrapped at 180�

Nearest Neighbor Discrete Continuous
Bowls 8.55 16.53 8.91
Mugs 12.22 17.58 8.33
Remotes 16.06 20.08 17.76
Markers 23.59 21.85 21.70
Erasers 18.65 21.51 17.06
Spraybottles 19.69 20.86 11.96
Scissors 19.41 24.24 21.27
Pots 15.05 17.30 13.45
Average 16.65 19.99 15.05

Table 1: Pitch angle estimation(RMSE in deg) - Known object location and categ label

3. Full detection, unknown category label

** Indicates test images were omitted in evaluation when handle was significantly
occluded

4. Grasp a⇥ordance prediction

2

• Empirically, filter reconstruction error always decreases as we
decrease sparselet size (@ fixed computation time)

• However, the space required to store the intermediate
representation is proportional to the sparselet dictionary size.
This means we have computation time VS memory bandwidth
tradeoff.

as shown in Eqn (5):

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

�� ⇥w1�
�� ⇥w2�

...

...

...

...
�� ⇥wK�

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

=

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

↵1

↵2
...
...
...
...

↵K

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

�

⇧⇧⇧⇧⇧⇤

�� ⇥ s1�
�� ⇥ s2�

...

...
�� ⇥ sd�

⇥

⌃⌃⌃⌃⌃⌅
= A M, (5)

Speedup =
Convolution with all model filters

Convolution with sparselets + Sparse reconstruction
(6)

=
Nm

|S|m+NE[||↵0||]
(7)

As N grows to a large number, (8)

Speedup =
m

E[||↵0||]
(9)

2. Known object location and category label

* Indicates angle is wrapped at 180�

Nearest Neighbor Discrete Continuous
Bowls 8.55 16.53 8.91
Mugs 12.22 17.58 8.33
Remotes 16.06 20.08 17.76
Markers 23.59 21.85 21.70
Erasers 18.65 21.51 17.06
Spraybottles 19.69 20.86 11.96
Scissors 19.41 24.24 21.27
Pots 15.05 17.30 13.45
Average 16.65 19.99 15.05

Table 1: Pitch angle estimation(RMSE in deg) - Known object location and categ label

3. Full detection, unknown category label

** Indicates test images were omitted in evaluation when handle was significantly
occluded

4. Grasp a⇥ordance prediction

2

Experiment

Casc
ade

DPM
on C

PU

Van
illa D

PM
on G

PU

Spar
sele
ts on

GPU

1 10 100 1000

1 sec

10 sec

1 min

10 min

Number of Object Classes

Pr
oc
es
sin
g
Ti
m
e

Va
nil
la
DP
M

on
GP
U �128,48

⇥
�128,32

⇥�64,32⇥�128,16
⇥
�64,16⇥�32,16⇥�64,8⇥

�64,4⇥

�128,48
⇥
�512,32

⇥
�600,20

⇥
�512,16

⇥
�128,16

⇥
�512,8⇥ �512,4⇥�256,4⇥�128,4⇥�64,4⇥

5 15 25 35
0

5

10

15

20

25

30

Speedup over Cascade DPM on CPU �⇥⇥

M
ea
n
A
P
��⇥

Acknowledgments

H. Song was supported by Samsung Scholarship Foundation. S. Zickler and C. Geyer were
supported by DARPA contract W911NF-10-C-0081. P. Felzenszwalb and R. Girshick were
supported in part by NSF grant IIS-0746569. T. Darrell was supported by DARPA contract
W911NF-10-2-0059, by NSF awards IIS-0905647, IIS-0819984, and support from Toyota and
Google.

Conclusion
• We introduced sparse intermediate representations that enable
real-time multiclass object detection on a laptop computer.

• Sparselets exploit the intrinsic redundancy among model filters and
can generalize to previously unseen categories from other domains.

• Our model is well suited to a parallel implementation, and we
report a new GPU DPM implementation with state of the art
performance one to two orders of magnitude faster than the fastest
current deformable part model implementations.

Real-time multiclass DPM detection
on a laptop

80 ~ 99 % Sparse

2

666666666664

—— ⇤w
1

——
—— ⇤w

2

——
...
...
...
...

–— ⇤wN —–

3

777777777775

⇡

2

666666666664

–— ↵
1

—–
–— ↵

2

—–
...
...
...
...

–— ↵N —–

3

777777777775

2

6664

—— ⇤ s
1

——
—— ⇤ s

2

——
...

—— ⇤ sK ——

3

7775
= AM, (10)

Speedup =
Convolution with all model filters

Convolution with sparselets + Sparse reconstruction
(11)

=
Nm

|S|m+NE[||↵i||0]
(12)

m : Convolution filter size (13)

As N grows to a large number, (14)

Speedup =
m

E[||↵i||0]
(15)

w⇤ = argmin
w

�

2
kwk2

2

+
1

M

MX

i=1

max
ŷ2Y

(w|�(xi, ŷ) +�(yi, ŷ))�w|�(xi, yi), (16)

2. Known object location and category label

* Indicates angle is wrapped at 180�

Nearest Neighbor Discrete Continuous

Bowls 8.55 16.53 8.91

Mugs 12.22 17.58 8.33

Remotes 16.06 20.08 17.76

Markers 23.59 21.85 21.70

Erasers 18.65 21.51 17.06

Spraybottles 19.69 20.86 11.96

Scissors 19.41 24.24 21.27

Pots 15.05 17.30 13.45

Average 16.65 19.99 15.05

Table 1: Pitch angle estimation(RMSE in deg) - Known object location and categ label

3

α β γ δ
ε ζ η θ
ι κ λ µ
ν ξ ο π

Α Β
Ε Ζ

Γ Δ
Η Θ

Ι Κ
Ν Ξ

Λ Μ
Ο Π

≈ +

+ +

Speedup vs. Mean AP. Blue dots are for “online” results measuring end-to-
end time. Orange dots are for “post-hoc” case. The tuple in parenthesis
denote (, ε).

Comparison of cascade algorithm on CPU vs. vanilla DPM on GPU vs.
sparselets accelerated DPM on GPU as number of object classes grows.

as shown in Eqn (5):

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

�� ⇥w1�
�� ⇥w2�

...

...

...

...
�� ⇥wK�

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

=

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

↵1

↵2
...
...
...
...

↵K

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

�

⇧⇧⇧⇧⇧⇤

�� ⇥ s1�
�� ⇥ s2�

...

...
�� ⇥ sd�

⇥

⌃⌃⌃⌃⌃⌅
= A M, (5)

Speedup =
Convolution with all model filters

Convolution with sparselets + Sparse reconstruction
(6)

=
Nm

|S|m+NE[||↵0||]
(7)

As N grows to a large number, (8)

Speedup =
m

E[||↵0||]
(9)

2. Known object location and category label

* Indicates angle is wrapped at 180�

Nearest Neighbor Discrete Continuous
Bowls 8.55 16.53 8.91
Mugs 12.22 17.58 8.33
Remotes 16.06 20.08 17.76
Markers 23.59 21.85 21.70
Erasers 18.65 21.51 17.06
Spraybottles 19.69 20.86 11.96
Scissors 19.41 24.24 21.27
Pots 15.05 17.30 13.45
Average 16.65 19.99 15.05

Table 1: Pitch angle estimation(RMSE in deg) - Known object location and categ label

3. Full detection, unknown category label

** Indicates test images were omitted in evaluation when handle was significantly
occluded

4. Grasp a⇥ordance prediction

2

∗ ∗

∗∗

∗

Cached

Sparsity

Set of model filters
Set of sparselet

r

0

= w,�
0

= ;, t = 1

WHILE t < m

�t = argmax
j=1,...,d

| hrt�1

, sji |

�t = �t�1

[s�t

Dictionary SN⇥d

Input vector wN⇥1

↵t = argmax
↵t

||w � �t↵t||

rt = w � �t↵t

t := t+ 1

Desired sparsity m

Activation vector ↵d⇥1

score(x, z) = wc +
NX

i=0

w|
ci ci(x, ⇢i) +

NX

i=1

d|
ci�ci(⇢0, ⇢i) = w|�(x, z),

= wc|{z}
component bias

+
NX

i=0

dX

j=1

8↵ij 6=0

↵ij

�
s|j ci(x, ⇢i)

�

| {z }
sparselet convolution and sparse reconstruction

+
NX

i=1

d|
ci�ci(⇢0, ⇢i)

| {z }
deformation cost

(6)

W = {w1, ...,wN}
S = {s1, ..., sK}

min
↵ij ,sj

NX

i=1

||wi �
KX

j=1

↵ijsj||2
2

subject to ||↵i||0  ✏ 8i = 1, ..., N

||sj||2
2

 1 8j = 1, ..., K

(7)

 ⇤wi ⇡ ⇤

0

BB@
KX

j=1

8↵ij 6=0

↵ijsj

1

CCA =
KX

j=1

8↵ij 6=0

↵ij (⇤ sj) . (8)

W = {w1, ...,wK}
S = {s1, ..., sd}

2

r

0

= w,�
0

= ;, t = 1

WHILE t < m

�t = argmax
j=1,...,d

| hrt�1

, sji |

�t = �t�1

[s�t

Dictionary SN⇥d

Input vector wN⇥1

↵t = argmax
↵t

||w � �t↵t||

rt = w � �t↵t

t := t+ 1

Desired sparsity m

Activation vector ↵d⇥1

score(x, z) = wc +
NX

i=0

w|
ci ci(x, ⇢i) +

NX

i=1

d|
ci�ci(⇢0, ⇢i) = w|�(x, z),

= wc|{z}
component bias

+
NX

i=0

dX

j=1

8↵ij 6=0

↵ij

�
s|j ci(x, ⇢i)

�

| {z }
sparselet convolution and sparse reconstruction

+
NX

i=1

d|
ci�ci(⇢0, ⇢i)

| {z }
deformation cost

(6)

W = {w1, ...,wN}
S = {s1, ..., sK}

min
↵ij ,sj

NX

i=1

||wi �
KX

j=1

↵ijsj||2
2

subject to ||↵i||0  ✏ 8i = 1, ..., N

||sj||2
2

 1 8j = 1, ..., K

(7)

 ⇤wi ⇡ ⇤

0

BB@
KX

j=1

8↵ij 6=0

↵ijsj

1

CCA =
KX

j=1

8↵ij 6=0

↵ij (⇤ sj) . (8)

W = {w1, ...,wK}
S = {s1, ..., sd}

2

r

0

= w,�
0

= ;, t = 1

WHILE t < m

�t = argmax
j=1,...,d

| hrt�1

, sji |

�t = �t�1

[s�t

Dictionary SN⇥d

Input vector wN⇥1

↵t = argmax
↵t

||w � �t↵t||

rt = w � �t↵t

t := t+ 1

Desired sparsity m

Activation vector ↵d⇥1

score(x, z) = wc +
NX

i=0

w|
ci ci(x, ⇢i) +

NX

i=1

d|
ci�ci(⇢0, ⇢i) = w|�(x, z),

= wc|{z}
component bias

+
NX

i=0

dX

j=1

8↵ij 6=0

↵ij

�
s|j ci(x, ⇢i)

�

| {z }
sparselet convolution and sparse reconstruction

+
NX

i=1

d|
ci�ci(⇢0, ⇢i)

| {z }
deformation cost

(6)

W = {w1, ...,wN}
S = {s1, ..., sK}

min
↵ij ,sj

NX

i=1

||wi �
KX

j=1

↵ijsj||2
2

subject to ||↵i||0  ✏ 8i = 1, ..., N

||sj||2
2

 1 8j = 1, ..., K

(7)

 ⇤wi ⇡ ⇤

0

BB@
KX

j=1

8↵ij 6=0

↵ijsj

1

CCA =
KX

j=1

8↵ij 6=0

↵ij (⇤ sj) . (8)

W = {w1, ...,wK}
S = {s1, ..., sd}

2

Friday, April 19, 13

