Sparselet Models for Efficient Multiclass Object Detection
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otivation

® High detection accuracy : DPM

Sparselets

Set of model filters
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W = {Wl, ...,WN}

Sparselet in a slide

Pre-processing

S ={s1,...,sk} Reconstruction

® Hypothesis pruning : Cascade / Coarse-to-fine Set of sparselet

® What if we want to detect hundreds or thousands
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® As the number of object categories grows, Sparse reconstruction of filter response ;
individual model filters are increasingly likely to be : . '
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Number of Object Classes

Comparison of cascade algorithm on CPU vs. vanilla DPM on GPU vs.

offline : pre-processing : N reconstruction Sparselet DPM sparselets accelerated DPM on GPU as number of object classes grows.
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* Empirically, filter reconstruction error always decreases as we
decrease sparselet size |S| (@ fixed computation time)

Convolution with all model filters

Speedup =

Convolution with sparselets + Sparse reconstruction ) ) )
v WL SP Top * However, the space required to store the intermediate

/Conclusion

Nm representation is proportional to the sparselet dictionary size.
~ 15 NE m : Convolution filter size This means we have computation time VS memory bandwidth . . . .
| |m + H ‘az‘ |0] deoff * We introduced sparse intermediate representations that enable
o Qa eoft. / real-time multiclass object detection on a laptop computer.
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» Sparselets exploit the intrinsic redundancy among model filters and
can generalize to previously unseen categories from other domains.

As N grows to a large number,
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Sparsity dominates as N grows!
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