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Goal 

• Shared predictive model with sparse 
activation vectors

• Efficient inference for linear structured 
output predictors

• Example application: realtime object 
recognition in CV, faster retrieval in IR, etc.

7

+

x

xx

...

...

...

model

response of root filter

transformed responses

response of part filters

feature map feature map at twice the resolution

combined score of 

root locationslow value high value

color encoding of filter 

response values

Fig. 4. The matching process at one scale. Responses from the root and part filters are computed a different
resolutions in the feature pyramid. The transformed responses are combined to yield a final score for each root
location. We show the responses and transformed responses for the “head” and “right shoulder” parts. Note how the
“head” filter is more discriminative. The combined scores clearly show two good hypothesis for the object at this scale.
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Pose estimation result

1. test

W = {w1, ...,wK}
S = {s1, ..., sd}

min
�ij ,sj

KX

i=1

||wi �
dX

j=1

�ijsj||22

subject to ||↵i||0 ⇤ ⇤ ⌅i = 1, ..., K

||sj||22 ⇤ 1 ⌅j = 1, ..., d

(1)

score(⌅) = m0(⌅) +
NX

i=1

max
⇥

mi(⌅ + ⇥)� di(⇥)

where mi(⌅) =
|S|X

j=1
⇤�ij ⇥=0

�ij (� (⌅) ⇥ Sj) .

(2)

Here di are quadratic deformation costs, ⇥ is a displacement and ⌅ is a position and
scale in a feature pyramid. After precomputation, the reconstructed part filter score,
si (⌅), simplifies to

si(⌅) =
|D|X

j=1
⇤�ij ⇥=0

�ijMj(⌅). (3)

2. Known object location and category label

* Indicates angle is wrapped at 180�

3. Full detection, unknown category label

** Indicates test images were omitted in evaluation when handle was significantly
occluded
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Set of model filters
Set of sparselet filters

Matrix factorization point of view

80 ~ 99 % Sparse

Visualized sparselet blocks on HOG

(Left) Sparselet dictionary of size 128
(Right) Top 16 activated sparselets for PASCAL 
motorcycle class

Blocked representation
• Intuition: model weights might be composed of smaller 

building blocks/tiles 

• For a matrix X with k number of elements, reshape the 
matrix such that the ratio between the full rank and actual 
rank of the reshaped matrix is maximized

Jan 23, 2012

argmax
m: mod(k,m)=0

min (m, k/m)

rank (reshape (X,m, k/m))
(1)
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Discriminatively Activated Sparselets

experiments demonstrate that sparselets are highly ef-
fective when applied to o↵-the-shelf image classifiers.

Our work is related to three strands of active research:
(1) part sharing with compositional models (Torralba
et al., 2007; Fidler et al., 2009; Zhu et al., 2010; Ott
& Everingham, 2011; Girshick et al., 2011), (2) sparse
coding and dictionary learning (Kreutz-Delgado et al.,
2003; Mairal et al., 2009; 2012), and (3) modeling
and learning with low-rank approximations (Freeman
& Adelson, 1991; Manduchi et al., 1998; Wolf et al.,
2007). None of these methods, however, simultane-
ously exploit shared interclass information and dis-
criminative sparsity learning to speed up inference
while maintaining task performance.

This paper also helps unify sparselets with the steer-
able part models of (Pirsiavash & Ramanan, 2012).
These closely related approaches were both applied to
DPMs and resulted in the same 3x speedup factor.
The fundamental di↵erences between the two meth-
ods lies in how they accelerate inference and how they
are trained. Steerable part models use a small part
dictionary with dense linear combinations and discrim-
inative training, whereas sparselets use a larger dictio-
nary with sparse linear combination, and a reconstruc-
tive error training paradigm. With regard to dictio-
nary size and linear combination density, the two ap-
proaches can be viewed as operating at di↵erent points
within the same algorithm design space. The remain-
ing di↵erence, then, lies in the training method. This
paper unifies the two approaches by showing how to
train sparselet activations discriminatively, or alter-
nately, how to train steering coe�cients sparsely.

The paper is structured as follows. In Sec. 2, we start
with a brief overview of sparselets (Song et al., 2012)
and formulate structured output prediction with gen-
eralized sparselets. In Sec. 3, we describe how dis-
criminative sparselet activation training fits into the
framework and discuss several regularization methods
for sparse activation learning. In Sec. 4, we discuss im-
portant applications of the proposed approach to mul-
ticlass object detection with mixtures of deformable
part models (Felzenszwalb et al., 2010a) and to multi-
class image classification. Before we conclude in Sec. 6,
we provide experimental results on multiclass object
detection and multiclass image classification problems
in Sec. 5.

2. Generalized sparselets

In this section we introduce generalized sparselets —
a general approach for speeding up inference in any
linear structured output prediction model.

2.1. Sparselets reviewed

Sparselets were introduced in (Song et al., 2012) for
the purpose of accelerating object detection with de-
formable part models (DPMs) (Felzenszwalb et al.,
2010a). In brief, a sparselet model is completely spec-
ified by a dictionary S = [s

1

, . . . , s
d

] in Rm⇥d, where
each column s

j

in Rm is called a sparselet. Noting that
the computational bottleneck of detection is convolu-
tion of a feature pyramid with a set of DPM part fil-
ters, {f

i

}, (Song et al., 2012) proposed to approximate
each filter f

i

as a sparse linear combination of sparse-
lets, yielding:  ⇤f

i

⇡  ⇤
P

j

↵

ij

s
j

=
P

j

↵

ij

( ⇤ s
j

).
The sparselet responses  ⇤ s

j

are independent of any
filter, and thus their cost can be amortized over all fil-
ters from all object models. In the remainder of this
section we present a novel generalization of this tech-
nique. First, we illustrate how to generalize sparselets
for simple multiclass linear classifiers, and then for any
linear structured output prediction model.

2.2. Multiclass classification with generalized
sparselets

Consider a set of K linear classifiers parameterized by
the weight vectors w

1

, . . . ,w
K

each in Rn. An input
feature vector x 2 Rn is assigned to a class fw(x) 2
{1, . . . ,K} according to the rule

fw(x) = argmax
k2{1,...,K}

w|
k

x. (1)

Our objective is to reduce the computational cost of
computing Eq. 1.

We begin by partitioning each parameter vector w
k

into several m-dimensional blocks. A block is a sub-
vector of parameters chosen so that the set of all blocks
from all w

k

admits a sparse representation over S.
Concretely, in the examples that follow, blocks will be
chosen to be fragments of part filters in a deformable
part model (see Fig. 1), or simply contiguous subvec-
tors of the parameters in a bag-of-visual-words clas-
sifier. For clarity, we will assume that n = pm for
some positive integer p. We can rewrite each linear
classifier in terms of its blocks, b

ki

in Rm, such that
w

k

= (b|
k1

, . . . ,b|
kp

)|. Similarly, we can partition an
input feature vector into p subvectors, c

i

in Rm, such
that x = (c|

1

, . . . , c|
p

)|.

Given a sparselet model S, we can approximate any
vector b 2 Rm as a sparse linear combination of the
sparselets in S

b ⇡ S↵ =
dX

i=1
↵i 6=0

↵

i

s
i

, (2)
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experiments demonstrate that sparselets are highly ef-
fective when applied to o↵-the-shelf image classifiers.

Our work is related to three strands of active research:
(1) part sharing with compositional models (Torralba
et al., 2007; Fidler et al., 2009; Zhu et al., 2010; Ott
& Everingham, 2011; Girshick et al., 2011), (2) sparse
coding and dictionary learning (Kreutz-Delgado et al.,
2003; Mairal et al., 2009; 2012), and (3) modeling
and learning with low-rank approximations (Freeman
& Adelson, 1991; Manduchi et al., 1998; Wolf et al.,
2007). None of these methods, however, simultane-
ously exploit shared interclass information and dis-
criminative sparsity learning to speed up inference
while maintaining task performance.

This paper also helps unify sparselets with the steer-
able part models of (Pirsiavash & Ramanan, 2012).
These closely related approaches were both applied to
DPMs and resulted in the same 3x speedup factor.
The fundamental di↵erences between the two meth-
ods lies in how they accelerate inference and how they
are trained. Steerable part models use a small part
dictionary with dense linear combinations and discrim-
inative training, whereas sparselets use a larger dictio-
nary with sparse linear combination, and a reconstruc-
tive error training paradigm. With regard to dictio-
nary size and linear combination density, the two ap-
proaches can be viewed as operating at di↵erent points
within the same algorithm design space. The remain-
ing di↵erence, then, lies in the training method. This
paper unifies the two approaches by showing how to
train sparselet activations discriminatively, or alter-
nately, how to train steering coe�cients sparsely.

The paper is structured as follows. In Sec. 2, we start
with a brief overview of sparselets (Song et al., 2012)
and formulate structured output prediction with gen-
eralized sparselets. In Sec. 3, we describe how dis-
criminative sparselet activation training fits into the
framework and discuss several regularization methods
for sparse activation learning. In Sec. 4, we discuss im-
portant applications of the proposed approach to mul-
ticlass object detection with mixtures of deformable
part models (Felzenszwalb et al., 2010a) and to multi-
class image classification. Before we conclude in Sec. 6,
we provide experimental results on multiclass object
detection and multiclass image classification problems
in Sec. 5.

2. Generalized sparselets

In this section we introduce generalized sparselets —
a general approach for speeding up inference in any
linear structured output prediction model.

2.1. Sparselets reviewed
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are independent of any
filter, and thus their cost can be amortized over all fil-
ters from all object models. In the remainder of this
section we present a novel generalization of this tech-
nique. First, we illustrate how to generalize sparselets
for simple multiclass linear classifiers, and then for any
linear structured output prediction model.
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Consider a set of K linear classifiers parameterized by
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K
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{1, . . . ,K} according to the rule
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k2{1,...,K}

w|
k

x. (1)

Our objective is to reduce the computational cost of
computing Eq. 1.
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k

admits a sparse representation over S.
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tors of the parameters in a bag-of-visual-words clas-
sifier. For clarity, we will assume that n = pm for
some positive integer p. We can rewrite each linear
classifier in terms of its blocks, b
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in Rm, such that
w

k

= (b|
k1

, . . . ,b|
kp
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Figure 1. (Left) 128 of the 256 sparselets learned from 20 DPMs trained on the PASCAL VOC 2007 dataset. (Right) The
top 16 sparselets activated for the motorbike category.

where ↵ = (↵
1

, . . . ,↵

d

)| 2 Rd is a sparselet activa-
tion vector for b. The quality of the approximation
depends on the fixed dictionary and the chosen acti-
vation vector. Now, the dot product in Eq. 1 can be
approximated as

w|
k

x = (b|
k1

, . . . ,b|
kp

)(c|
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, . . . , c|
p

)|

=
pX

i=1
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i=1
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)|c
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=
pX

i=1

↵|
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(S|c
i

). (3)

We note two important properties of Eq. 3: (1) the
sparselet responses S|c

i

are independent of any par-
ticular classifier, and (2) the subsequent product with
↵

ki

can be computed e�ciently by accessing only the
nonzero elements of ↵

ki

. In the following, let �

0

be
the average number of nonzero elements in each ↵

ki

.

Computational costs. We can analyze generalized
sparselets for multiclass classification by looking at the
cost of computing b|

ki

c
i

for a single block i and for all
classes k. The original classifiers require Km addi-
tions and multiplications. The generalized sparselet
approach has a shared cost of dm operations for com-
puting the sparselet responses, r

i

= S|c
i

, and a cost
of K�

0

operations for computing ↵|
ki

r
i

for all classes.
The overall speedup is thusKm/(dm+K�

0

). To make
this value large, the dictionary size d should be much
smaller than the number of classes K, and the aver-
age number of nonzero coe�cients in the activation
vectors should be much less than the sparselet size
m. As the number of classes becomes large, the cost
of computing sparselet responses becomes fully amor-
tized which leads to a maximum theoretical speedup
of m/�

0

(Song et al., 2012). This emphasizes the im-
portance of a sparse representation, in contrast, for
example, to the dense steering coe�cients in (Pirsi-
avash & Ramanan, 2012). This analysis shows that

generalized sparselets are most applicable to multi-
class problems with a large number of classes. This
is a regime of growing interest, especially in com-
puter vision as exemplified by datasets such as Ima-
geNet (Deng et al., 2009), which includes more than
10,000 categories (Deng et al., 2010). In Sec. 5.3 we
show results on the Caltech-{101,256} (Fei-Fei et al.,
2006; Gri�n et al., 2007) datasets demonstrating that
even with only one or two hundred classes generalized
sparselets can accelerate simple linear classifiers.

2.3. Structured output prediction with
generalized sparselets

Multiclass classification is a special case of structured
output prediction. To complete the description of gen-
eralized sparselets for structured output prediction,
consider the linear discriminant function

fw(x) = argmax
y2Y

w|�(x, y) (4)

where the input x comes from an arbitrary input space
X , and fw outputs an element from the label space Y.
As in the previous discussion, w is partitioned into
blocks in a problem specific manner. The partition
used in the multiclass setup is one concrete example.
Given the partition, sparselets can be applied to each
block in a straightforward extension of the multiclass
case.

Computational costs. To generalize the analysis
to the structured prediction setting, we rewrite the
speedup as Qm/(dm+Q�

0

), where Q is defined to be
the number of unique parameter blocks that are multi-
plied with a distinct subvector of feature values. Intu-
itively, Q counts the number of times the intermediate
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where �(y, y⇥) is a loss function. Given a fixed sparselet model S, we can rewrite Eq. 5 in terms of
the activation vector parameters and sparselet responses. For clarity, assume the slots of w have been
arranged so that slots 1 through s are represented with sparselets, and slots s+1 through K are not.1
For each slot wk = (b|

k1, . . . ,b
|
kpk

)| that is represented by sparselets, we define a corresponding
activation parameter vector �k = (�|

k1, . . . ,�
|
kpk

)| ⇤ Rpkd. Let � = (�|
1 , . . . ,�

|
s )

| and w̃ =
(w|

s+1, . . . ,w
|
K)|, and define the new model parameter vector ⇥ = (�|, w̃|)|.

We transform the feature vector in a similar manner. For a feature vector slot �k(x, y) =
(c|1 , . . . , c

|
pk
)| that will be represented by sparselets, we transform the features into sparselet

responses: �̃k(x, y) = (c|1S, . . . , c|pk
S)| ⇤ Rpkd. The fully transformed feature vector is

�̃(x, y) = (�̃
|
1(x, y), . . . , �̃

|
s (x, y),�

|
s+1(x, y), . . . ,�

|
K(x, y))|. The resulting objective is

⇥� = argmin
⇥

R(�) +
�

2
⌃w̃⌃22 +

1

M

M⇤

i=1

max
ŷ⇤Y

�
⇥|�̃(xi, ŷ) +�(yi, ŷ)

⇥
� ⇥|�̃(xi, yi), (6)

where R(�) is a regularizer applied to the activation vectors.

3.2 Inducing sparsity

We consider three sparsity inducing regularizers R.

I. Lasso penalty [26] RLasso(�) = �1⌃�⌃1
II. Elastic net penalty [33] REN(�) = �1⌃�⌃1 + �2⌃�⌃22

III. Combined ⌦0 and ⌦2 penalty R0,2(�) = �2⌃�⌃22 subject to ⌃�⌃0 ⇥ �0

The first two regularizers lead to convex optimization problems, however the third does not. We
consider two alternative methods for approximately minimizing Eq. 6 when R(�) = R0,2(�). Both
of these methods employ a two step process. In the first step, a subset of the activation coefficients is
selected to satisfy the constraint ⌃�⌃0 ⇥ �0. In the second step, the selection of nonzero variables
is fixed (thus satisfying the sparsity constraint) and the resulting convex optimization problem is
solved. We consider the following variable selection strategies.

III-A. Overshoot, rank, and threshold (ORT). In this method, we first apply either RLasso or
REN with �1 set to overshoot the target number of nonzero variables �0. We then rank the
nonzero activation coefficients by their magnitudes and select the �0 variables with the largest
magnitudes. Each variable in the selected variable set’s complement is thresholded to zero.

III-B. Orthogonal matching pursuit (OMP). In this method, we select the nonzero variables by
minimizing the reconstruction error between parameter blocks and their sparse coding ap-
proximation subject to the constraint ⌃�⌃0 ⇥ �0. In practice, we use orthogonal matching
pursuit [20] as implemented in SPAMS software package [19]. This produces the same ini-
tial set of activation vectors as the baseline method [1]. However, we then learn the selected
variables discriminatively according to Eq. 6.

4 Implementation

We first focus on the application of our novel sparselet activation vector learning approach to object
detection with mixtures of deformable part models [10] in order to facilitate direct comparison with
the results in [1]. In brief, the deformable part model (DPM) from [10] is specified by a root filter
that models the global appearance of an object class and a set of N part filters that capture local
appearance. The part filters are attached to the root filter by flexible “springs” that allow the model
to match the image with a deformed arrangement of parts. In practice, several DPMs are combined
into one mixture model to better represent more extreme variation in object class appearance.

A DPM is matched to an image by maximizing a score function over latent variables z. Let z =
(c, ⇥0, . . . , ⇥N ) specify a mixture component c ⇤ {1, . . . , C}, root filter location ⇥0, and part filter

1This flexibility lets us leave slots where sparselets don’t make sense unchanged, e.g. a bias parameter slot.
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where �(y, y⇥) is a loss function. Given a fixed sparselet model S, we can rewrite Eq. 5 in terms of
the activation vector parameters and sparselet responses. For clarity, assume the slots of w have been
arranged so that slots 1 through s are represented with sparselets, and slots s+1 through K are not.1
For each slot wk = (b|
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)| that is represented by sparselets, we define a corresponding
activation parameter vector �k = (�|
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We transform the feature vector in a similar manner. For a feature vector slot �k(x, y) =
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)| that will be represented by sparselets, we transform the features into sparselet
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�̃(x, y) = (�̃
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where R(�) is a regularizer applied to the activation vectors.

3.2 Inducing sparsity

We consider three sparsity inducing regularizers R.

I. Lasso penalty [26] RLasso(�) = �1⌃�⌃1
II. Elastic net penalty [33] REN(�) = �1⌃�⌃1 + �2⌃�⌃22

III. Combined ⌦0 and ⌦2 penalty R0,2(�) = �2⌃�⌃22 subject to ⌃�⌃0 ⇥ �0

The first two regularizers lead to convex optimization problems, however the third does not. We
consider two alternative methods for approximately minimizing Eq. 6 when R(�) = R0,2(�). Both
of these methods employ a two step process. In the first step, a subset of the activation coefficients is
selected to satisfy the constraint ⌃�⌃0 ⇥ �0. In the second step, the selection of nonzero variables
is fixed (thus satisfying the sparsity constraint) and the resulting convex optimization problem is
solved. We consider the following variable selection strategies.

III-A. Overshoot, rank, and threshold (ORT). In this method, we first apply either RLasso or
REN with �1 set to overshoot the target number of nonzero variables �0. We then rank the
nonzero activation coefficients by their magnitudes and select the �0 variables with the largest
magnitudes. Each variable in the selected variable set’s complement is thresholded to zero.

III-B. Orthogonal matching pursuit (OMP). In this method, we select the nonzero variables by
minimizing the reconstruction error between parameter blocks and their sparse coding ap-
proximation subject to the constraint ⌃�⌃0 ⇥ �0. In practice, we use orthogonal matching
pursuit [20] as implemented in SPAMS software package [19]. This produces the same ini-
tial set of activation vectors as the baseline method [1]. However, we then learn the selected
variables discriminatively according to Eq. 6.

4 Implementation

We first focus on the application of our novel sparselet activation vector learning approach to object
detection with mixtures of deformable part models [10] in order to facilitate direct comparison with
the results in [1]. In brief, the deformable part model (DPM) from [10] is specified by a root filter
that models the global appearance of an object class and a set of N part filters that capture local
appearance. The part filters are attached to the root filter by flexible “springs” that allow the model
to match the image with a deformed arrangement of parts. In practice, several DPMs are combined
into one mixture model to better represent more extreme variation in object class appearance.

A DPM is matched to an image by maximizing a score function over latent variables z. Let z =
(c, ⇥0, . . . , ⇥N ) specify a mixture component c ⇤ {1, . . . , C}, root filter location ⇥0, and part filter

1This flexibility lets us leave slots where sparselets don’t make sense unchanged, e.g. a bias parameter slot.
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where �(y, y⇥) is a loss function. Given a fixed sparselet model S, we can rewrite Eq. 5 in terms of
the activation vector parameters and sparselet responses. For clarity, assume the slots of w have been
arranged so that slots 1 through s are represented with sparselets, and slots s+1 through K are not.1
For each slot wk = (b|
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)| that is represented by sparselets, we define a corresponding
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|
pk
)| that will be represented by sparselets, we transform the features into sparselet
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where R(�) is a regularizer applied to the activation vectors.

3.2 Inducing sparsity

We consider three sparsity inducing regularizers R.

I. Lasso penalty [26] RLasso(�) = �1⌃�⌃1
II. Elastic net penalty [33] REN(�) = �1⌃�⌃1 + �2⌃�⌃22

III. Combined ⌦0 and ⌦2 penalty R0,2(�) = �2⌃�⌃22 subject to ⌃�⌃0 ⇥ �0

The first two regularizers lead to convex optimization problems, however the third does not. We
consider two alternative methods for approximately minimizing Eq. 6 when R(�) = R0,2(�). Both
of these methods employ a two step process. In the first step, a subset of the activation coefficients is
selected to satisfy the constraint ⌃�⌃0 ⇥ �0. In the second step, the selection of nonzero variables
is fixed (thus satisfying the sparsity constraint) and the resulting convex optimization problem is
solved. We consider the following variable selection strategies.

III-A. Overshoot, rank, and threshold (ORT). In this method, we first apply either RLasso or
REN with �1 set to overshoot the target number of nonzero variables �0. We then rank the
nonzero activation coefficients by their magnitudes and select the �0 variables with the largest
magnitudes. Each variable in the selected variable set’s complement is thresholded to zero.

III-B. Orthogonal matching pursuit (OMP). In this method, we select the nonzero variables by
minimizing the reconstruction error between parameter blocks and their sparse coding ap-
proximation subject to the constraint ⌃�⌃0 ⇥ �0. In practice, we use orthogonal matching
pursuit [20] as implemented in SPAMS software package [19]. This produces the same ini-
tial set of activation vectors as the baseline method [1]. However, we then learn the selected
variables discriminatively according to Eq. 6.

4 Implementation

We first focus on the application of our novel sparselet activation vector learning approach to object
detection with mixtures of deformable part models [10] in order to facilitate direct comparison with
the results in [1]. In brief, the deformable part model (DPM) from [10] is specified by a root filter
that models the global appearance of an object class and a set of N part filters that capture local
appearance. The part filters are attached to the root filter by flexible “springs” that allow the model
to match the image with a deformed arrangement of parts. In practice, several DPMs are combined
into one mixture model to better represent more extreme variation in object class appearance.

A DPM is matched to an image by maximizing a score function over latent variables z. Let z =
(c, ⇥0, . . . , ⇥N ) specify a mixture component c ⇤ {1, . . . , C}, root filter location ⇥0, and part filter

1This flexibility lets us leave slots where sparselets don’t make sense unchanged, e.g. a bias parameter slot.
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where �(y, y⇥) is a loss function. Given a fixed sparselet model S, we can rewrite Eq. 5 in terms of
the activation vector parameters and sparselet responses. For clarity, assume the slots of w have been
arranged so that slots 1 through s are represented with sparselets, and slots s+1 through K are not.1
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where R(�) is a regularizer applied to the activation vectors.

3.2 Inducing sparsity

We consider three sparsity inducing regularizers R.

I. Lasso penalty [26] RLasso(�) = �1⌃�⌃1
II. Elastic net penalty [33] REN(�) = �1⌃�⌃1 + �2⌃�⌃22

III. Combined ⌦0 and ⌦2 penalty R0,2(�) = �2⌃�⌃22 subject to ⌃�⌃0 ⇥ �0

The first two regularizers lead to convex optimization problems, however the third does not. We
consider two alternative methods for approximately minimizing Eq. 6 when R(�) = R0,2(�). Both
of these methods employ a two step process. In the first step, a subset of the activation coefficients is
selected to satisfy the constraint ⌃�⌃0 ⇥ �0. In the second step, the selection of nonzero variables
is fixed (thus satisfying the sparsity constraint) and the resulting convex optimization problem is
solved. We consider the following variable selection strategies.

III-A. Overshoot, rank, and threshold (ORT). In this method, we first apply either RLasso or
REN with �1 set to overshoot the target number of nonzero variables �0. We then rank the
nonzero activation coefficients by their magnitudes and select the �0 variables with the largest
magnitudes. Each variable in the selected variable set’s complement is thresholded to zero.

III-B. Orthogonal matching pursuit (OMP). In this method, we select the nonzero variables by
minimizing the reconstruction error between parameter blocks and their sparse coding ap-
proximation subject to the constraint ⌃�⌃0 ⇥ �0. In practice, we use orthogonal matching
pursuit [20] as implemented in SPAMS software package [19]. This produces the same ini-
tial set of activation vectors as the baseline method [1]. However, we then learn the selected
variables discriminatively according to Eq. 6.

4 Implementation

We first focus on the application of our novel sparselet activation vector learning approach to object
detection with mixtures of deformable part models [10] in order to facilitate direct comparison with
the results in [1]. In brief, the deformable part model (DPM) from [10] is specified by a root filter
that models the global appearance of an object class and a set of N part filters that capture local
appearance. The part filters are attached to the root filter by flexible “springs” that allow the model
to match the image with a deformed arrangement of parts. In practice, several DPMs are combined
into one mixture model to better represent more extreme variation in object class appearance.

A DPM is matched to an image by maximizing a score function over latent variables z. Let z =
(c, ⇥0, . . . , ⇥N ) specify a mixture component c ⇤ {1, . . . , C}, root filter location ⇥0, and part filter

1This flexibility lets us leave slots where sparselets don’t make sense unchanged, e.g. a bias parameter slot.
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⇥|�̃(xi, ŷ) +�(yi, ŷ)
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that models the global appearance of an object class and a set of N part filters that capture local
appearance. The part filters are attached to the root filter by flexible “springs” that allow the model
to match the image with a deformed arrangement of parts. In practice, several DPMs are combined
into one mixture model to better represent more extreme variation in object class appearance.

A DPM is matched to an image by maximizing a score function over latent variables z. Let z =
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Experiments

Conclusion
• Training activation vectors discriminatively significantly outperforms 

reconstructive training

• Generalized framework for training activation vectors discriminatively using 
SSVM with sparsity constraints
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Speedup =
Convolution with all model filters

Convolution with sparselets + Sparse reconstruction
(16)

=
Nm

|S|m+NE[||↵i||0]
(17)

m : Convolution filter size (18)

As N grows to a large number, (19)

Speedup =
m

E[||↵i||0]
(20)

w⇤ = argmin
w

�

2
kwk2

2

+
1

M

MX

i=1

max
ŷ2Y

(w|�(xi, ŷ) +�(yi, ŷ))�w|�(xi, yi), (21)

2. Known object location and category label

* Indicates angle is wrapped at 180�

3. Full detection, unknown category label

** Indicates test images were omitted in evaluation when handle was significantly
occluded

4. Grasp a↵ordance prediction
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