Discriminatively Activated Sparselets Ross Girshick*, Hyun Oh Song*, Trevor Darrell UC Berkeley, *indicates equal contribution

Goal

- Shared predictive model with sparse activation vectors
- Efficient inference for linear structured output predictors
- Example application: realtime object

Blocked representation

- Intuition: model weights might be composed of smaller building blocks/tiles
- For a matrix X with k number of elements, reshape the matrix such that the ratio between the full rank and actual rank of the reshaped matrix is maximized

Joint feature map: multiclass classification

 $\mathbf{w} = (\mathbf{w}_1^\mathsf{T}, \dots, \mathbf{w}_K^\mathsf{T})^\mathsf{T}$ $\mathbf{\Phi}\left(\mathbf{x},k\right) = (0,\ldots,0,\mathbf{x}^{\mathsf{T}},0,\ldots,0)^{\mathsf{T}}$ feature installed in slot k \rightarrow class index

recognition in CV, faster retrieval in IR, etc.

Object recognition

Sparselet review

 $\mathcal{W} = \{\mathbf{w_1}, ..., \mathbf{w_K}\}$ Set of model filters $\mathcal{S} = \{\mathbf{s_1}, \dots, \mathbf{s_d}\}$ Set of sparselet filters $\min_{\alpha_{ij},s_j} \sum_{i=1}^{n} ||\mathbf{w}_i - \sum_{j=1}^{n} \alpha_{ij} \mathbf{s}_j||_2^2$ subject to $||\boldsymbol{\alpha}_i||_0 \leq \epsilon \quad \forall i = 1, ..., K$ $||\mathbf{s}_{j}||_{2}^{2} \le 1 \quad \forall j = 1, ..., d$

Matrix factorization point of view

Visualized sparselet blocks on HOG

	+1+++* +1+++* +*
	~~×/**
依任赵庆和这个的这些分子是一次在世	
	送兴
	*++ X +=== +1 -=== +1

(Left) Sparselet dictionary of size 128 (Right) Top 16 activated sparselets for PASCAL motorcycle class

Sparsity enforcing norms

 $R_{\text{Lasso}}(\boldsymbol{\alpha}) = \lambda_1 \| \boldsymbol{\alpha} \|_1$ I. Lasso penalty II. Elastic net penalty $R_{\text{EN}}(\boldsymbol{\alpha}) = \lambda_1 \|\boldsymbol{\alpha}\|_1 + \lambda_2 \|\boldsymbol{\alpha}\|_2^2$ III. Combined ℓ_0 and ℓ_2 penalty $R_{0,2}(\alpha) = \lambda_2 \|\alpha\|_2^2$ subject to $\|\alpha\|_0 \le \lambda_0$ **III-A.** Overshoot, rank, and threshold (ORT)

III-B. Orthogonal matching pursuit (OMP)

Conclusion

- Training activation vectors discriminatively significantly outperforms reconstructive training
- Generalized framework for training activation vectors discriminatively using SSVM with sparsity constraints