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Consider the linear discriminant function

fw(z) = argmax wT®(z,y), (1)
yey

where w is a parameter vector in R”, z comes from an
input space X, and y is in a label space ).

For clarity, we will assume that n = pm for some in-
teger p, where m is the length of each sparselet s; in
the sparselet dictionary S. This assumption can be
removed with simple modifications to the discussion
that follows. We partition w into a set of blocks b; in
R™ such that w = (b{,...,bT)T.

Let A be an algorithm such that A(w,z) computes
fw(x) — d.e., it solves the argmax in Eq. 1. We are
going to build a bipartite graph G = (BUC, &) that
represents certain computations performed by A. The
graph depends on A’s inputs w and x, but to lighten
notation we will omit this dependence.

Each node in G corresponds to a vector in R™. With
a slight abuse of notation we will label each node with
the vector that it is in correspondence with. Simi-
larly, we will label the edges with a pair of vectors
(i.e., nodes), each in R™. We define the first set of
disconnected nodes in G to be the set of all blocks in
w: B={bq,...,b,}. We will define the second set of
disconnected nodes, C, next.

Any algorithm that computes Eq. 1 will perform some
number of computations of the form bTc, for a block
b € B and some vector ¢ € R™. The vectors ¢ appear-
ing in these computations are most likely subvectors
of ®(x,y) arising from various values of y. The graph
G is going to represent all unique computations of this
form. Conceptually, we can construct C by running
the algorithm A and adding each unique vector c that
appears in a computation of the form bTc to C. The
edge set £ connects a node b € B to a node in ¢ € C
if and only if A performs the computation bTc. For
a specific algorithm A, we can construct G analyti-
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cally. An example graph for a multiclass classification
problem is given in Fig. 1.

Graph G’s edges encode exactly all of the computa-
tions of the form bTc and therefore we can use it to
analyze the computational costs of A with and without
generalized sparselets.

Obviously, not all of the computation performed by A
are of the form captured by the graph. For example,
when generalized distance transforms are used by A to
solve in the computation of Eq. 1 for deformable part
models, the cost of computing the distance transforms
is outside of the scope of G (and outside the application
of sparselets). We let the quantity T'(w, z) account for
all computational costs not represented in G.

We are now ready to write the number of operations
performed by A(w,z). First, without sparselets we
have

TOriginal(wv x) = T(W, CL’) +m Z deg(c), (2)
ceC

where deg(v) is the degree of a node v in G. The
second term in Eq. 2 accounts for the m additions and
multiplications that are performed when computing
bTc for a pair of nodes (b, c) € £.

When sparselets are applied, the cost becomes

TSparselets(“’v JJ) = T(W7 l‘) + dm|C| + /\O Z deg(c),

ceC

(3)
The second term in Eq. 3 accounts for the cost of pre-
computing the sparselet responses, r = STc (cost dm),
for each node in C. The third term accounts for the
sparse dot product a(b)Tr (cost \g) computed for each
pair (b,c) € £, where a(b) is the sparselet activation
vector for b.
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Figure 1. Computation graph for a multiclass problem with K = 3. Let the sparselet size be m and the number of blocks
be p = 2. We define w = (w],w],wl)T in REP™  Each per-class classifier wy in RP™ is partitioned into p blocks such
that wi = (b],,bl,)T. An input vector x in RP™ is partitioned into subvectors such that x = (c],c])T. The feature map

®(x, k) in R¥P™ is defined as: ®(x,1) = (x7,0,...,0)T; ®(x,2) = (0,...,0,x7,0,...,0)T; &(x,3) = (0,...,0,x)T. The
edges in the graph encode the dot products computed while solving argmaxycy 5 53 wT®(x, k).

The speedup is the ratio Toriginal/Tsparselots-

T(w,z) +m Y deg(es)
T(w, )+ dm|C| + Ao Y, deg(c;)

(4)

In all of the examples we consider in this paper, the
degree of each node in C is a single constant: deg(c) =
Q for all ¢ € C. In this case, the speedup simplifies to
the following.

T(w,z) + QIClm o)
T(w.2) + dmlcl + QICAg

If we narrow our scope to only consider the speedup
restricted to the operations of A affected by sparselets,
we can ignore the T'(w, x) terms and note that the |C|
factors cancel.

Qm

This narrowing is justified in the multiclass classifi-
cation case (with K classes) where the cost T'(w,z)
amounts to computing the maximum value of K num-
bers, which is negligible compared to the other terms.
The computation graph for a simple multiclass exam-
ple with K = 3 is given in Fig. 1.



