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Consider the linear discriminant function

fw(x) = argmax
y∈Y

wᵀΦ(x, y), (1)

where w is a parameter vector in Rn, x comes from an
input space X , and y is in a label space Y.

For clarity, we will assume that n = pm for some in-
teger p, where m is the length of each sparselet si in
the sparselet dictionary S. This assumption can be
removed with simple modifications to the discussion
that follows. We partition w into a set of blocks bi in
Rm such that w = (bᵀ

1 , . . . ,b
ᵀ
p)ᵀ.

Let A be an algorithm such that A(w, x) computes
fw(x) — i.e., it solves the argmax in Eq. 1. We are
going to build a bipartite graph G = (B ∪ C, E) that
represents certain computations performed by A. The
graph depends on A’s inputs w and x, but to lighten
notation we will omit this dependence.

Each node in G corresponds to a vector in Rm. With
a slight abuse of notation we will label each node with
the vector that it is in correspondence with. Simi-
larly, we will label the edges with a pair of vectors
(i.e., nodes), each in Rm. We define the first set of
disconnected nodes in G to be the set of all blocks in
w: B = {b1, . . . ,bp}. We will define the second set of
disconnected nodes, C, next.

Any algorithm that computes Eq. 1 will perform some
number of computations of the form bᵀc, for a block
b ∈ B and some vector c ∈ Rm. The vectors c appear-
ing in these computations are most likely subvectors
of Φ(x, y) arising from various values of y. The graph
G is going to represent all unique computations of this
form. Conceptually, we can construct C by running
the algorithm A and adding each unique vector c that
appears in a computation of the form bᵀc to C. The
edge set E connects a node b ∈ B to a node in c ∈ C
if and only if A performs the computation bᵀc. For
a specific algorithm A, we can construct G analyti-

cally. An example graph for a multiclass classification
problem is given in Fig. 1.

Graph G’s edges encode exactly all of the computa-
tions of the form bᵀc and therefore we can use it to
analyze the computational costs of A with and without
generalized sparselets.

Obviously, not all of the computation performed by A
are of the form captured by the graph. For example,
when generalized distance transforms are used by A to
solve in the computation of Eq. 1 for deformable part
models, the cost of computing the distance transforms
is outside of the scope of G (and outside the application
of sparselets). We let the quantity T (w, x) account for
all computational costs not represented in G.

We are now ready to write the number of operations
performed by A(w, x). First, without sparselets we
have

TOriginal(w, x) = T (w, x) +m
∑
c∈C

deg(c), (2)

where deg(v) is the degree of a node v in G. The
second term in Eq. 2 accounts for the m additions and
multiplications that are performed when computing
bᵀc for a pair of nodes (b, c) ∈ E .

When sparselets are applied, the cost becomes

TSparselets(w, x) = T (w, x) + dm|C| + λ0
∑
c∈C

deg(c),

(3)
The second term in Eq. 3 accounts for the cost of pre-
computing the sparselet responses, r = Sᵀc (cost dm),
for each node in C. The third term accounts for the
sparse dot product α(b)ᵀr (cost λ0) computed for each
pair (b, c) ∈ E , where α(b) is the sparselet activation
vector for b.
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Figure 1. Computation graph for a multiclass problem with K = 3. Let the sparselet size be m and the number of blocks
be p = 2. We define w = (wᵀ

1 ,w
ᵀ
2 ,w

ᵀ
3)ᵀ in RKpm. Each per-class classifier wk in Rpm is partitioned into p blocks such

that wk = (bᵀ
k1,b

ᵀ
k2)ᵀ. An input vector x in Rpm is partitioned into subvectors such that x = (cᵀ

1, c
ᵀ
2)ᵀ. The feature map

Φ(x, k) in RKpm is defined as: Φ(x, 1) = (xᵀ, 0, . . . , 0)ᵀ; Φ(x, 2) = (0, . . . , 0,xᵀ, 0, . . . , 0)ᵀ; Φ(x, 3) = (0, . . . , 0,xᵀ)ᵀ. The
edges in the graph encode the dot products computed while solving argmaxk∈{1,2,3} wᵀΦ(x, k).

The speedup is the ratio TOriginal/Tsparselets.

T (w, x) +m
∑|C|

i=1 deg(ci)

T (w, x) + dm|C| + λ0
∑|C|

i=1 deg(ci)
(4)

In all of the examples we consider in this paper, the
degree of each node in C is a single constant: deg(c) =
Q for all c ∈ C. In this case, the speedup simplifies to
the following.

T (w, x) +Q|C|m
T (w, x) + dm|C| +Q|C|λ0

(5)

If we narrow our scope to only consider the speedup
restricted to the operations of A affected by sparselets,
we can ignore the T (w, x) terms and note that the |C|
factors cancel.

Qm

dm+Qλ0
(6)

This narrowing is justified in the multiclass classifi-
cation case (with K classes) where the cost T (w, x)
amounts to computing the maximum value of K num-
bers, which is negligible compared to the other terms.
The computation graph for a simple multiclass exam-
ple with K = 3 is given in Fig. 1.


