Generalized Sparselets Computational Cost Analysis (Supplementary Material)

Ross Girshick Hyun Oh Song Trevor Darrell

University of California, Berkeley, Berkeley, CA 94720

RBG@EECS.BERKELEY.EDU SONG@EECS.BERKELEY.EDU TREVOR@EECS.BERKELEY.EDU

Consider the linear discriminant function

$$f_{\mathbf{w}}(x) = \underset{y \in \mathcal{V}}{\operatorname{argmax}} \mathbf{w}^{\mathsf{T}} \mathbf{\Phi}(x, y), \tag{1}$$

where **w** is a parameter vector in \mathbb{R}^n , x comes from an input space \mathcal{X} , and y is in a label space \mathcal{Y} .

For clarity, we will assume that n = pm for some integer p, where m is the length of each sparselet \mathbf{s}_i in the sparselet dictionary \mathbf{S} . This assumption can be removed with simple modifications to the discussion that follows. We partition \mathbf{w} into a set of blocks \mathbf{b}_i in \mathbb{R}^m such that $\mathbf{w} = (\mathbf{b}_1^{\mathsf{T}}, \dots, \mathbf{b}_n^{\mathsf{T}})^{\mathsf{T}}$.

Let \mathcal{A} be an algorithm such that $\mathcal{A}(\mathbf{w}, x)$ computes $f_{\mathbf{w}}(x)$ — *i.e.*, it solves the argmax in Eq. 1. We are going to build a bipartite graph $\mathcal{G} = (\mathcal{B} \cup \mathcal{C}, \mathcal{E})$ that represents certain computations performed by \mathcal{A} . The graph depends on \mathcal{A} 's inputs \mathbf{w} and x, but to lighten notation we will omit this dependence.

Each node in \mathcal{G} corresponds to a vector in \mathbb{R}^m . With a slight abuse of notation we will label each node with the vector that it is in correspondence with. Similarly, we will label the edges with a pair of vectors (*i.e.*, nodes), each in \mathbb{R}^m . We define the first set of disconnected nodes in \mathcal{G} to be the set of all blocks in \mathbf{w} : $\mathcal{B} = \{\mathbf{b}_1, \ldots, \mathbf{b}_p\}$. We will define the second set of disconnected nodes, \mathcal{C} , next.

Any algorithm that computes Eq. 1 will perform some number of computations of the form $\mathbf{b}^{\intercal}\mathbf{c}$, for a block $\mathbf{b} \in \mathcal{B}$ and some vector $\mathbf{c} \in \mathbb{R}^m$. The vectors \mathbf{c} appearing in these computations are most likely subvectors of $\Phi(x,y)$ arising from various values of y. The graph \mathcal{G} is going to represent all unique computations of this form. Conceptually, we can construct \mathcal{C} by running the algorithm \mathcal{A} and adding each unique vector \mathbf{c} that appears in a computation of the form $\mathbf{b}^{\intercal}\mathbf{c}$ to \mathcal{C} . The edge set \mathcal{E} connects a node $\mathbf{b} \in \mathcal{B}$ to a node in $\mathbf{c} \in \mathcal{C}$ if and only if \mathcal{A} performs the computation $\mathbf{b}^{\intercal}\mathbf{c}$. For a specific algorithm \mathcal{A} , we can construct \mathcal{G} analyti-

cally. An example graph for a multiclass classification problem is given in Fig. 1.

Graph \mathcal{G} 's edges encode exactly all of the computations of the form $\mathbf{b}^{\intercal}\mathbf{c}$ and therefore we can use it to analyze the computational costs of \mathcal{A} with and without generalized sparselets.

Obviously, not all of the computation performed by \mathcal{A} are of the form captured by the graph. For example, when generalized distance transforms are used by \mathcal{A} to solve in the computation of Eq. 1 for deformable part models, the cost of computing the distance transforms is outside of the scope of \mathcal{G} (and outside the application of sparselets). We let the quantity $T(\mathbf{w}, x)$ account for all computational costs not represented in \mathcal{G} .

We are now ready to write the number of operations performed by $\mathcal{A}(\mathbf{w}, x)$. First, without sparselets we have

$$T_{\text{Original}}(\mathbf{w}, x) = T(\mathbf{w}, x) + m \sum_{\mathbf{c} \in \mathcal{C}} \deg(\mathbf{c}),$$
 (2)

where $\deg(\mathbf{v})$ is the degree of a node \mathbf{v} in \mathcal{G} . The second term in Eq. 2 accounts for the m additions and multiplications that are performed when computing $\mathbf{b}^{\intercal}\mathbf{c}$ for a pair of nodes $(\mathbf{b}, \mathbf{c}) \in \mathcal{E}$.

When sparselets are applied, the cost becomes

$$T_{\text{Sparselets}}(\mathbf{w}, x) = T(\mathbf{w}, x) + dm|\mathcal{C}| + \lambda_0 \sum_{\mathbf{c} \in \mathcal{C}} \deg(\mathbf{c}),$$
(3)

The second term in Eq. 3 accounts for the cost of precomputing the sparselet responses, $\mathbf{r} = \mathbf{S}^{\mathsf{T}} \mathbf{c}$ (cost dm), for each node in \mathcal{C} . The third term accounts for the sparse dot product $\alpha(\mathbf{b})^{\mathsf{T}} \mathbf{r}$ (cost λ_0) computed for each pair $(\mathbf{b}, \mathbf{c}) \in \mathcal{E}$, where $\alpha(\mathbf{b})$ is the sparselet activation vector for \mathbf{b} .

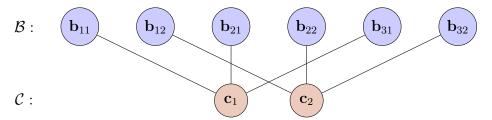


Figure 1. Computation graph for a multiclass problem with K=3. Let the sparselet size be m and the number of blocks be p=2. We define $\mathbf{w}=(\mathbf{w}_1^\intercal,\mathbf{w}_2^\intercal,\mathbf{w}_3^\intercal)^\intercal$ in \mathbb{R}^{Kpm} . Each per-class classifier \mathbf{w}_k in \mathbb{R}^{pm} is partitioned into p blocks such that $\mathbf{w}_k=(\mathbf{b}_{k1}^\intercal,\mathbf{b}_{k2}^\intercal)^\intercal$. An input vector \mathbf{x} in \mathbb{R}^{pm} is partitioned into subvectors such that $\mathbf{x}=(\mathbf{c}_1^\intercal,\mathbf{c}_2^\intercal)^\intercal$. The feature map $\mathbf{\Phi}(\mathbf{x},k)$ in \mathbb{R}^{Kpm} is defined as: $\mathbf{\Phi}(\mathbf{x},1)=(\mathbf{x}^\intercal,0,\ldots,0)^\intercal$; $\mathbf{\Phi}(\mathbf{x},2)=(0,\ldots,0,\mathbf{x}^\intercal,0,\ldots,0)^\intercal$; $\mathbf{\Phi}(\mathbf{x},3)=(0,\ldots,0,\mathbf{x}^\intercal)^\intercal$. The edges in the graph encode the dot products computed while solving $\mathrm{argmax}_{k\in\{1,2,3\}}\,\mathbf{w}^\intercal\mathbf{\Phi}(\mathbf{x},k)$.

The speedup is the ratio $T_{\text{Original}}/T_{\text{sparselets}}$.

$$\frac{T(\mathbf{w}, x) + m \sum_{i=1}^{|\mathcal{C}|} \deg(\mathbf{c}_i)}{T(\mathbf{w}, x) + dm|\mathcal{C}| + \lambda_0 \sum_{i=1}^{|\mathcal{C}|} \deg(\mathbf{c}_i)}$$
(4)

In all of the examples we consider in this paper, the degree of each node in \mathcal{C} is a single constant: $\deg(\mathbf{c}) = Q$ for all $\mathbf{c} \in \mathcal{C}$. In this case, the speedup simplifies to the following.

$$\frac{T(\mathbf{w}, x) + Q|\mathcal{C}|m}{T(\mathbf{w}, x) + dm|\mathcal{C}| + Q|\mathcal{C}|\lambda_0}$$
 (5)

If we narrow our scope to only consider the speedup restricted to the operations of \mathcal{A} affected by sparselets, we can ignore the $T(\mathbf{w}, x)$ terms and note that the $|\mathcal{C}|$ factors cancel.

$$\frac{Qm}{dm + Q\lambda_0} \tag{6}$$

This narrowing is justified in the multiclass classification case (with K classes) where the cost $T(\mathbf{w}, x)$ amounts to computing the maximum value of K numbers, which is negligible compared to the other terms. The computation graph for a simple multiclass example with K=3 is given in Fig. 1.